

FCC PART 15, SUBPART B CLASS A TEST REPORT TEST METHOD: ANSI C63.4 LIMITS: CISPR 22 CLASS A

For COMPUTER Model: MINNOWBOARD TURBOT

Prepared for

ADI ENGINEERING 1758 WORTH PARK CHARLOTTESVILLE, VA 22911

Prepared by:_____

EUEGENE ADAMS

Approved by:_____

JEFF KLINGER

COMPATIBLE ELECTRONICS INC. 20621 PASCAL WAY LAKE FOREST, CALIFORNIA 92630 (949) 587-0400

DATE: AUGUST 7, 2015

	REPORT	PORT APPENDICES			TOTAL		
	BODY	A	B	С	D	Ε	
PAGES	17	2	2	2	11	9	42

This report shall not be reproduced, except in full, without the written approval of Compatible Electronics.

TABLE OF CONTENTS

Section / Title	
GENERAL REPORT SUMMARY	4
SUMMARY OF TEST RESULTS	4
1. PURPOSE	5
2. ADMINISTRATIVE DATA	6
2.1 Location of Testing	6
2.2 Traceability Statement	6
2.3 Cognizant Personnel	6
2.4 Date Test Sample was Received	6
2.5 Disposition of the Test Sample	6
2.6 Abbreviations and Acronyms	6
3. APPLICABLE DOCUMENTS	7
4. Description of Test Configuration	8
4.1 Description of Test Configuration - EMI	8
4.1.1 Photograph of Test Configuration - EMI	8
4.1.2 Cable Construction and Termination	9
5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT	10
5.1 EUT and Accessory List	10
5.2 EMI Test Equipment	11
5.3 Test Software	11
6. TEST SITE DESCRIPTION	12
6.1 Test Facility Description	12
6.2 EUT Mounting, Bonding and Grounding	12
6.3 Facility Environmental Characteristics	12
6.4 Measurement Uncertainty	12
7. Test Procedures	13
7.1 RF Emissions	13
7.1.1 Conducted Emissions Test	13
7.1.2 Radiated Emissions Test	14
7.1.3 RF Emissions Test Results	15
8. TEST PROCEDURE DEVIATIONS	16
9. CONCLUSIONS	16

LIST OF APPENDICES

APPENDIX	TITLE			
А	Laboratory Accreditations			
В	Modifications to the EUT			
С	Additional Models Covered Under This Report			
D	Diagrams, Charts and Photos			
	Test Setup Diagrams			
	Antenna and Pre-amp factors			
	Radiated and Conducted Emissions Photos			
Ε	Data Sheets			

LIST OF TABLES

TABLE	TITLE
1	Conducted Emissions Test Results
2	Radiated Emissions Test Results

LIST OF FIGURES

FIGURE	TITLE
1	Conducted Emissions Test Setup
2	Plot Map And Layout of Test Site
3	High Frequency Test Volume

GENERAL REPORT SUMMARY

This electromagnetic emission report is generated by Compatible Electronics Inc., which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced in any form except in full, without the written permission of Compatible Electronics.

This report must not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Device Tested:	COMPUTER Model: MINNOWBOARD TURBOT S/N: 0124150029			
Product Description:	The EUT is a Computer with an SD card, USB, gigabit Ethernet, micro HDMI, 2GB 1066MT/s DDR3 memory down RAM and E3826 1.46 GHz Dual Core Intel Atom Processor.			
Modifications:	The EUT was modified in order to comply with specifications. Please see the list of modifications in Appendix B.			
Manufacturer:	ADI Engineering. 1758 Worth Park Charlottesville, VA 22911			
Test Date:	August 7, 2015			
Test Specifications:	EMI requirements FCC CFR Title 47, Part 15 Subpart B, Class B per CISPR 22 Limits Test Procedure: ANSI C63.4.			

SUMMARY OF TEST RESULTS

TEST	DESCRIPTION	RESULTS
1	Conducted RF Emissions, 150 kHz - 30 MHz.	Complies with the Class A limits of FCC CFR Title 47, Part 15 Subpart B. Highest Reading in Relation to Spec. limit: = $54.15 \text{ dBuV} @ 891.10$ MHz (*u _c = 2.88 dB)
2	Radiated RF Emissions, 30 MHz - 8000 MHz.	Complies with the Class A limits of FCC CFR Title 47, Part 15 Subpart B. Highest Reading in relation to spec. limit =60.42 dBuV/m @ 150.00 kHz (*u _c = 3.53 dB)

*u_c = Combined Standard Uncertainty

PURPOSE

1.

This document is a qualification test report based on the Electromagnetic Interference (EMI) tests performed on the COMPUTER Model: MINNOWBOARD TURBOT. The EMI measurements were performed according to the measurement procedure described in ANSI C63.4. The tests were performed in order to determine whether the electromagnetic emissions from the equipment under test, referred to as EUT hereafter, are within the **Class A** specification limits defined by FCC Code of Federal Regulations Title 47, part 15 subpart B. Under paragraph G of Section 15.109 of the Code of Federal Regulations Title 47, part 15 of the FCC rules, the FCC accepts the international standards set forth in C.I.S.P.R. Publication 22.

2. ADMINISTRATIVE DATA

2.1 Location of Testing

The emissions tests described herein were performed at the test facility of Compatible Electronics, 20621 Pascal Way, Lake Forest, California 92630.

2.2 Traceability Statement

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

2.3 Cognizant Personnel

ADI Engineering

Terri Danowski Program Manager

Compatible Electronics, Inc.

Torey Oliver	Test Technician
Eugene Adams	Test Technician
Jeff Klinger	Director of EMC Engineering

2.4 Date Test Sample was Received

The test sample was received on August 7, 2015.

2.5 Disposition of the Test Sample

The test sample was not returned to ADI Engineering as of the date on this report.

2.6 Abbreviations and Acronyms

The following abbreviations and acronyms may be used in this document.

RF	Radio Frequency
EMI	Electromagnetic Interference
EUT	Equipment Under Test
P/N	Part Number
S/N	Serial Number
HP	Hewlett Packard
ITE	Information Technology Equipment
CML	Corrected Meter Limit
LISN	Line Impedance Stabilization Network

3. APPLICABLE DOCUMENTS

The following documents are referenced or used in the preparation of this EMI Test Report.

SPEC	TITLE
CISPR 22 2010	Limits and methods of measurement of radio interference characteristics of information technology equipment.
CISPR 16 2008	Specification for radio disturbance and immunity measuring apparatus and methods.
FCC CFR Title 47, Subpart B.	FCC Rules - Radio frequency devices (including digital devices).
ANSI C63.4 2009	Methods of measurement of radio-noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz.

4. DESCRIPTION OF TEST CONFIGURATION

4.1 Description of Test Configuration - EMI

The EUT was set up in a tabletop configuration. The EUT was connected to the monitor, USB to Ethernet adapter, keyboard, and power supply via its micro HDMI, USB, USB, and power input port respectively. The EUT was being exercised by running an Ethernet test program that repeatedly looped.

The highest emissions were found when the EUT was running in the above configuration. The cables were moved to maximize the emissions. The final radiated and conducted data was taken in this mode of operation. All initial investigations were performed with the spectrum analyzer in manual mode scanning the frequency range continuously. The cables were and routed as shown in the photographs in Appendix D.

4.1.1 Photograph of Test Configuration - EMI

4.1.2 Cable Construction and Termination

Cable 1	
	This is a 1.5 meter, braid and foil shielded, round HDMI cable that connects the EUT to the monitor. The cable has a micro HDMI connector on the EUT end and a HDMI connector on the monitor end. The shield of the cable was grounded to the chassis via the connectors. The cable was bundled to a length of 1 meter.
Cable 2	This is a 0.1 meter, foil shielded, round USB cable that connects the EUT to the USB to Ethernet
	Adapter. There is a USB connector on the EUT end and hardwired into the USB to Ethernet Adapter. The shield of the cable was grounded to the chassis via the connectors.
Cable 3	
	This is a 1.5 meter, unshielded round Ethernet cable that connects the EUT to the USB to Ethernet Adapter. There is a RJ-45 connector on the EUT end and hardwired into the USB to Ethernet Adapter. The cable was bundled to a length of 1 meter.
Cable 4	
	This is a 1. meter, foil shielded, round USB cable that connects the EUT to the keyboard. There is a USB connector on the EUT end and hardwired into the keyboard. The shield of the cable was grounded to the chassis via the connectors.
Cable 5	
	This is a 1.5 meter, unshielded, round cable that connects the EUT to the EUT power supply. The cable has a barrel connector on the EUT end and is hardwired into the EUT power supply. The cable was bundled to a length of 1 meter.
Cable 6	
	This is a 1.5 meter, unshielded, round cable that connects the monitor to the monitor power supply. The cable has a barrel connector on the monitor end and is hardwired into the monitor power supply. The cable was bundled to a length of 1 meter.

5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT

5.1 EUT and Accessory List

#	EQUIPMENT TYPE	MANUFACTURER	MODEL	SERIAL NUMBER
1	COMPUTER (EUT)	ADI ENGINEERING	MINNOWBOARD TURBOT	S/N: 0124150029
2	MONITOR	ACER	H236HL	52350536542
3	USB TO ETHERNET	PLUGABLE	USB2-E100	NONE
4	KEYBOARD	LOGITECH	Y-U0009	NONE
5	EUT POWER SUPPLY	CUI INC	EPSA050250U	LF1R02132101926
6	MONITOR POWER SUPPLY	ΗΟΙΟΤΟ	ADS-40SG-19-3	NONE

5.2 EMI Test Equipment

EQUIPMENT TYPE	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	CAL. DATE	CAL. DUE DATE
Computer	Compatible Electronics	NONE	NONE	N/A	N/A
EMI Receiver	Rohde & Schwarz	ESIB40	100172	9/15/2014	9/15/2015
Antenna, CombiLog	Com Power	AC-220	003	5/21/2014	5/21/2016
Antenna, Horn	Com-Power	AH-118 071225		7/1/2014	7/1/2016
Pre-Amplifier	Com-Power	PAM-118A	551034	2/6/2014	2/6/2016
LISN (EUT)	Com Power	LI-215	191935	4/3/2015	4/3/2016
LISN (ACC)	Com Power	LI-215	191944	4/6/2015	4/6/2016
Mast, Antenna Positioner	Sunol Science Corporation	SC104V	081309-1	N/A	N/A
Antenna Mast	Sunol Science Corporation	TWR 95-4	081309-3	N/A	N/A
Turntable	Sunol Science Corporation	FM2011VS	NONE	N/A	N/A

5.3 Test Software

LAB(S)	SOFTWARE TITLE	MANUFACTURER	VERSION
	Measurement and Automation		
P, R	Software	TDK TestLab	5.53

6.2

6. TEST SITE DESCRIPTION

6.1 Test Facility Description

Please refer to section 2.1 and 7.1.2 of this report for EMI test location.

EUT Mounting, Bonding and Grounding

The EUT was mounted on a 1.0 by 1.5 meter non-conductive table 0.8 meters above the ground plane.

The EUT was grounded through the shield of the HDMI Connector.

6.3 Facility Environmental Characteristics

When applicable refer to the data sheets in Appendix E for the relative humidity, air temperature and barometric pressure.

6.4 Measurement Uncertainty

"Compatible Electronics' U_{lab} value is less than U_{cispr} , thus based on this – compliance is deemed to occur if no measured disturbance exceeds the disturbance limit

$$u_{\rm c}(y) = \sqrt{\sum_i c_i^2 \ u^2(x_i)}$$

Measurement	U _{cispr}	$U_{\text{lab}} = 2 \ uc (y)$	
Conducted disturbance (mains port)	(150 kHz – 30 MHz)	3,6 dB	2.88 dB
Radiated disturbance (electric field strength on an open area test site or alternative test site)	(30 MHz – 1 000 MHz)	5,2 dB	3.53 dB

7. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

7.1 **RF Emissions**

7.1.1 Conducted Emissions Test

The EMI Receiver was used as a measuring meter. A 10 dB attenuation pad was used for the protection of the EMI Receiver input stage. All factors associated with attenuator and cables were recorded into the EMI Software Program accordingly to display the actual corrected measured level. The LISN output was connected to the input of the EMI Receiver. The output of the second LISN was terminated with 50-ohm termination. The effective measurement bandwidth used for the conducted emissions test was 9 kHz.

Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The EUT was powered through the LISN, which was bonded to the ground plane. The LISN power was filtered and the filter was bonded to the ground plane. The EUT was set up with the minimum distances from any conductive surfaces as specified in ANSI C63.4. The excess power cord was wrapped in a figure eight pattern to form a bundle not exceeding 0.4 meters in length.

The initial test data was taken in manual mode while scanning the frequency ranges of 0.15 MHz to 30 MHz. The conducted emissions from the EUT were maximized for operating mode as well as cable placement. Once a predominant frequency (within 12 dB of the limit) was found, it was more closely examined with the EMI receiver centered on the predominant frequency.

The final data was collected under program control. The six highest emissions are listed in Table 1.

7.1.2 Radiated Emissions Test

The EMI Receiver was used as the measuring meter. The preamplifiers were used to increase the sensitivity of the instrument. The EMI Receiver was used in the Analyzer mode feature activated. In this mode, the EMI receiver can then record the actual frequency to be measured. This final reading is then taken accurately in the EMI Receiver mode, which takes into account the cable loss, amplifier gain and antenna factors, so that a true reading is compared to the true limit. A quasi-peak reading was taken only for those readings, which are marked accordingly on the data sheets. The effective measurement bandwidth used for the radiated emissions test was according to the frequency measured (120 kHz for 30 MHz to 1 GHz and 1 MHz for 1 GHz and above).

Broadband Combilog and horn antennas were used as transducers during the measurement. The Combilog antenna was used from 30 MHz to 1000 MHz and the horn antenna was used above 1 GHz. Furthermore, the frequency span was reduced during the preliminary investigations as deemed necessary.

The TDK FAC-3 shielded test chamber of Compatible Electronics, Inc. was used for radiated emissions testing. This test site is set up according to CISPR 16. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength).

The EUT was tested at a3 meter test distance from 30 MHz to 1 GHz, and at a 3 meter test distance above 1 GHz to obtain final test data. The six highest emissions are listed in Table 2.

7.1.3 **RF Emissions Test Results**

Table 1.0CONDUCTED EMISSION RESULTS (120V)COMPUTER MODEL: MINNOWBOARD TURBOT

Frequency	Emission Level*	Specification Limit dBuV	Delta
MHz	dBuV		dB
0.15 L	60.42 #	79.00	-18.58
0.15 N	58.71 #	79.00	-20.29
0.17 L	55.90 #	79.00	-23.10
0.16 N	55.01 #	79.00	-23.99
0.60 L	35.55 A	60.00	-24.45
0.20 L	54.20 #	79.00	-24.80

Table 2.0RADIATED EMISSION RESULTS
COMPUTER MODEL: MINNOWBOARD TURBOT

Frequency	Emission Level*	Specification Limit dBuV	Delta		
MHz	dBuV		dB		
891.10	54.15	57.45	-3.30		
445.60	52.59	57.45	-4.86		
148.50	45.18	50.45	-5.27		
148.50	45.01	50.45	-5.44		
550.00	49.20	57.45	-8.25		
250.00	48.41	57.45	-9.04		

Notes: * The complete emissions data is given in Appendix E of this report.

** The antenna factors and preamplifier gain are attached in Appendix D of this report.

- # Quasi-Peak Reading
- A Average Reading

8. TEST PROCEDURE DEVIATIONS

There were no deviations from the test procedures.

9. CONCLUSIONS

The COMPUTER Model: MINNOWBOARD TURBOT meets all of the **Class A** specification limits defined by C.I.S.P.R. Publication 22 for Information Technology Equipment from 150 kHz to 1 GHz. Under paragraph G of section 15.109 of the Code of Federal Regulations Title 47, Part 15, of the FCC Rules, the FCC accepts the international standards set forth in C.I.S.P.R. Publication 22.

APPENDIX A

LABORATORY ACCREDITATIONS

LABORATORY ACCREDITATIONS AND RECOGNITIONS

For US, Canada, Australia/New Zealand, Taiwan and the European Union, Compatible Electronics is currently accredited by NVLAP to ISO/IEC 17025 an ISO 9002 equivalent. Please follow the link to the NIST site for each of our facilities NVLAP certificate and scope of accreditation.

Silverado/Lake Forest Division: <u>http://ts.nist.gov/ts/htdocs/210/214/scopes/2005270.htm</u> Brea Division: <u>http://ts.nist.gov/ts/htdocs/210/214/scopes/2005280.htm</u> Agoura Division: <u>http://ts.nist.gov/ts/htdocs/210/214/scopes/2000630.htm</u>

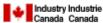
Compatible Electronics has been accredited by ANSI and appointed by the FCC to serve as a Telecommunications Certification Body (TCB). Compatible Electronics ANSI TCB listing can be found at: <u>http://www.ansi.org/public/ca/ansi_cp.html</u>

Compatible Electronics has been nominated as a Conformity Assessment Body (CAB) for EMC under the US/EU Mutual Recognition Agreement (MRA). Compatible Electronics NIST US/EU CAB listing *can be* found at: <u>http://ts.nist.gov/ts/htdocs/210/gsig/emc-cabs-mar02.pdf</u>

Compatible Electronics has been nominated as a Conformity Assessment Body (CAB) for Taiwan/BSMI under the US/APEC (Asia-Pacific Economic Cooperation) Mutual Recognition Agreement (MRA). Compatible Electronics NIST US/APEC CAB listing can be found at: http://ts.nist.gov/ts/htdocs/210/gsig/apec/bsmi-cabs-may02.pdf

Compatible Electronics has been validated by NEMKO against ISO/IEC 17025 under the NEMKO EMC Laboratory Authorization (ELA) program to all EN standards required by the European Union (EU) EMC Directive 89/336/EEC. Please follow the link to the Compatible Electronics' web site for each of our facilities NEMKO ELA certificate and scope of accreditation. http://www.celectronics.com/certs.htm

We are also certified/listed for IT products by the following country/agency:


Compatible Electronics VCCI listing can be found at: http://www.vcci.or.jp/vcci_e/member/tekigo/setsubi_index_id.html

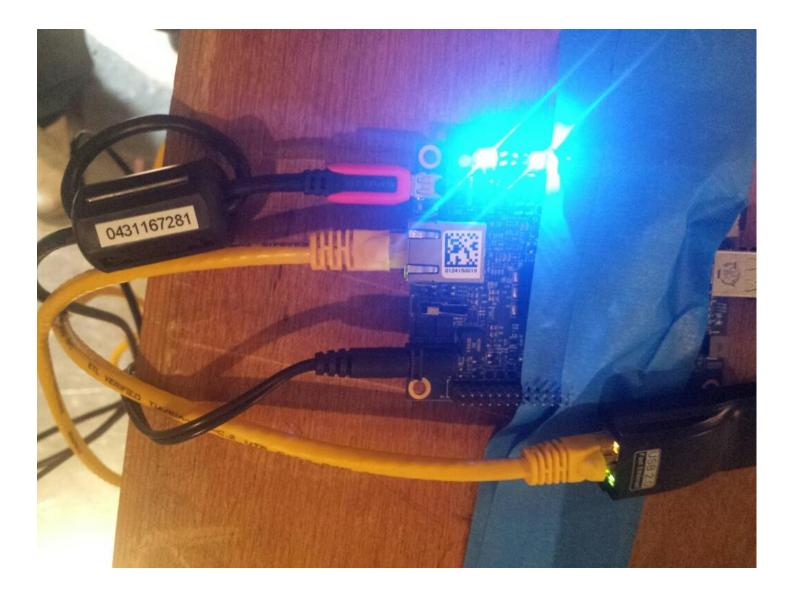
Just type "Compatible Electronics" into the Keyword search box.

Compatible Electronics FCC listing can be found at: https://gullfoss2.fcc.gov/prod/oet/index_ie.html

Just type "Compatible Electronics" into the Test Firms search box.

Canada Compatible Electronics IC listing can be found at: <u>http://spectrum.ic.gc.ca/~cert/labs/oats_lab_c_e.html</u>

APPENDIX B


MODIFICATIONS TO THE EUT

MODIFICATIONS TO THE EUT

The following modifications were made to the EUT during the test in order to comply with FCC Class A limits. The modifications were made in such a way that they could be reproduced during manufacture.

1. Added ferrite (P/N: 0431167281) to HDMI cable with 1 turn

APPENDIX C

ADDITIONAL MODELS COVERED UNDER THIS REPORT

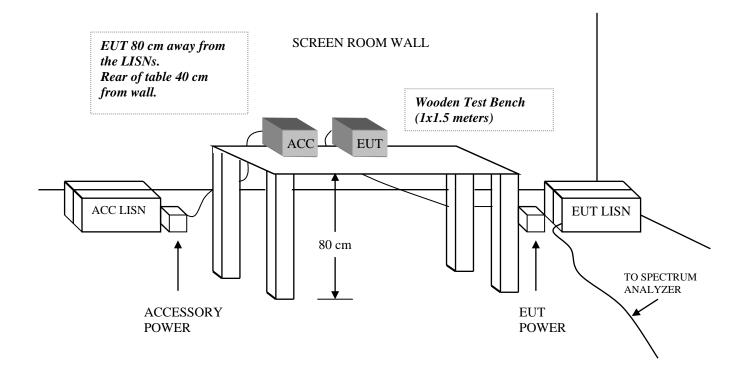
ADDITIONAL MODELS COVERED UNDER THIS REPORT

USED FOR THE PRIMARY TEST

•

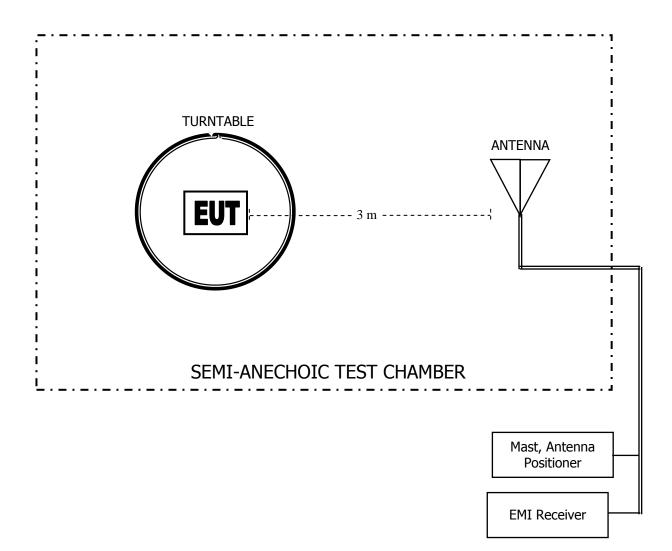
COMPUTER Model: MINNOWBOARD TURBOT S/N: 0124150029

There were no additional models covered under this report.



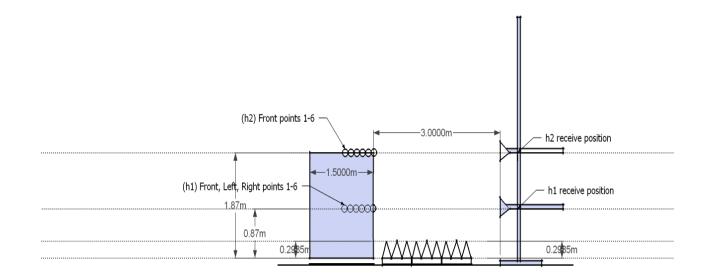
APPENDIX D

DIAGRAMS, CHARTS AND PHOTOS


FIGURE 1: CONDUCTED EMISSIONS TEST SETUP

Page D3

FIGURE 2: RADIATED EMISSIONS 3-METER SEMI-ANECHOIC TEST CHAMBER



Т

FIGURE 3: HIGH FREQUENCY TEST VOLUME

COM-POWER AC-220

LAB P - COMBILOG ANTENNA

S/N: 003

CALIBRATION DUE: MAY 21, 2016

FREQUENCY (MHz)	FACTOR	FREQUENCY (MHz)	FACTOR
	(dB)		(dB)
30	22.90	160	15.20
35	22.80	180	14.40
40	23.50	200	14.10
45	21.90	250	15.90
50	22.00	300	18.20
60	18.10	400	19.40
70	12.80	500	21.50
80	12.10	600	22.00
90	12.70	700	23.90
100	13.00	800	25.80
120	15.50	900	27.00
140	14.40	1000	27.90

COM-POWER AH-118

HORN ANTENNA

S/N: 071225

CALIBRATION DUE: JULY 1, 2016

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
1000	30.1	9500	44.2
1500	29.2	10000	43.4
2000	31.6	10500	44.6
2500	35.5	11000	45.1
3000	33.7	11500	45.7
3500	36.0	12000	46.2
4000	35.4	12500	45.4
4500	35.5	13000	44.8
5000	40.1	13500	46.7
5500	37.8	14000	47.8
6000	39.0	14500	46.4
6500	39.9	15000	47.2
7000	40.4	15500	45.5
7500	44.4	16000	45.0
8000	44.1	16500	44.5
8500	43.1	17000	47.0
9000	43.0	17500	47.8
		18000	50.6

COM-POWER PAM-118A

1-18GHz - PREAMPLIFIER

S/N: 551034

CALIBRATION DUE: FEBRUARY 6, 2016

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(MHz)	(dB)	(MHz)	(dB)
500	36.77	5500	39.82
1000	38.63	6000	38.74
1100	38.72	6500	39.60
1200	38.97	7000	35.52
1300	38.59	7500	36.61
1400	39.18	8000	36.92
1500	38.71	8500	37.13
1600	39.28	9000	36.50
1700	39.25	9500	38.92
1800	39.06	10000	38.74
1900	40.34	11000	35.23
2000	40.07	12000	35.64
2500	39.69	13000	36.73
3000	40.94	14000	36.48
3500	40.41	15000	37.57
4000	40.44	16000	38.10
4500	41.20	17000	37.34
5000	39.35	18000	36.80

FRONT VIEW

ADI ENGINEERING COMPUTER Model: MINNOWBOARD TURBOT FCC CLASS A - RADIATED EMISSIONS

REAR VIEW

ADI ENGINEERING COMPUTER Model: MINNOWBOARD TURBOT FCC CLASS A - RADIATED EMISSIONS

FRONT VIEW

ADI ENGINEERING COMPUTER Model: MINNOWBOARD TURBOT FCC CLASS A - CONDUCTED EMISSIONS

REAR VIEW

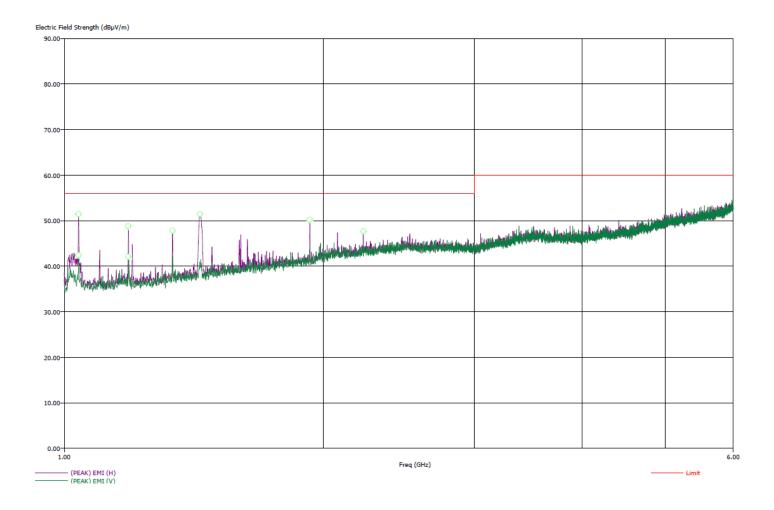
ADI ENGINEERING COMPUTER Model: MINNOWBOARD TURBOT FCC CLASS A - CONDUCTED EMISSIONS

APPENDIX E

DATA SHEETS

Title: CISPR 22 Class A 8/7/2015 2:37:59 PM File: Radiated Pre-Scan 30-1000Mhz.set Sequence: Preliminary Scan Operator: Eugene Adams EUT Type: General Purpose Computer / Minnow EUT Condition: The EUT is constantly looping data back to itself. Comments: Spider HDMI Cable Temp: 72f Hum: 42% 120V 60Hz

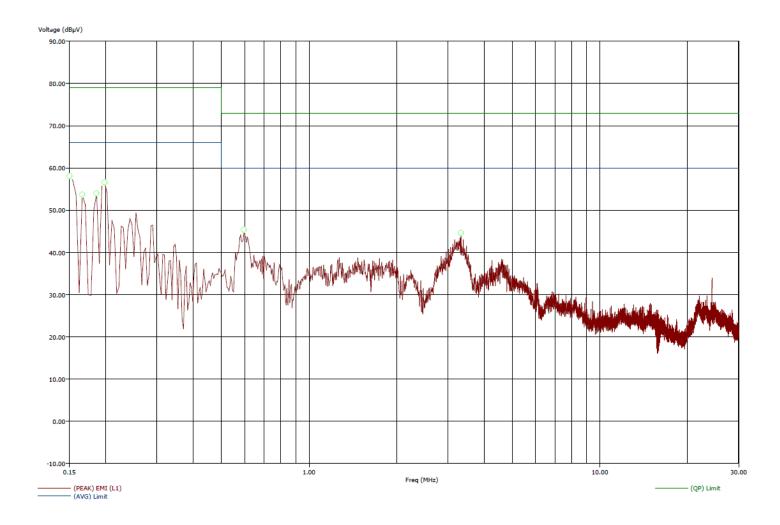
Electric Field Strength (dBµV/m) 80.00 70.00 60.00 50.00 40.00 30.00 الم الميا Mut 20.00 10.00 0.00-30.00 100.00 1000.00 Freq (MHz) - (PEAK) EMI (H) — Limit (PEAK) EMI (V)



Title: CISPR 22 Class A 8/7/2015 3:00:36 PM File: Radiated Final 30-1000Mhz.set Sequence: Final Measurements Operator: Eugene Adams EUT Type: General Purpose Computer / Minnow EUT Condition: The EUT is constantly looping data back to itself. Comments: Spider HDMI Cable Temp: 72f Hum: 42% 120V 60Hz

Freq(MHz)	(QP) Margin (dB)	(QP)EMI (dBµV/m)	(PEAK) EMI (dBµV/m)	Limit (dBµV/m)	Pol	Ttbl Agl (deg)	Twr Ht (cm)	Transduce r (dB)	Cable (dB)
148.50	-5.27	45.18	47.95	50.45	Н	209.50	226.11	14.75	1.00
148.50	-5.44	45.01	47.89	50.45	V	173.00	106.41	14.75	1.00
250.00	-9.04	48.41	49.56	57.45	Н	160.00	140.64	15.90	1.56
297.10	-9.42	48.03	50.12	57.45	V	345.25	125.05	18.07	1.50
445.60	-4.86	52.59	54.38	57.45	Н	215.50	104.17	20.41	1.51
550.00	-8.25	49.20	49.84	57.45	V	164.50	101.94	21.76	2.48
891.10	-3.30	54.15	57.14	57.45	Н	101.75	106.41	26.90	3.03

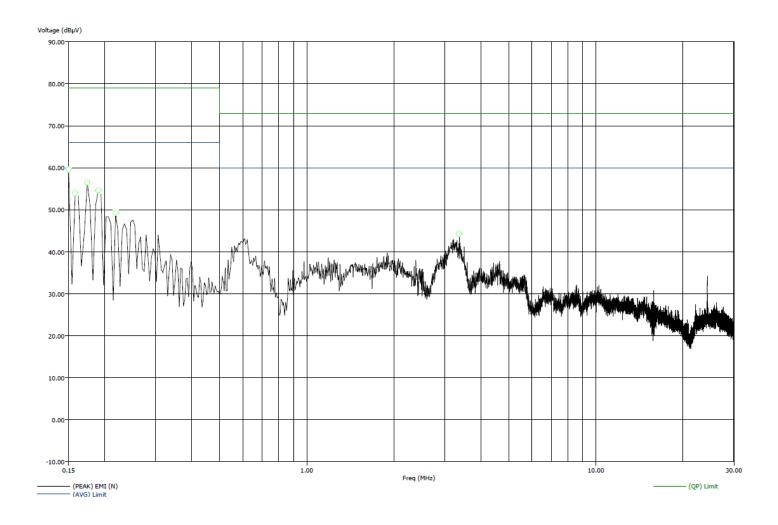
Title: CISPR 22 Class A 8/7/2015 4:00:02 PM File: Radiated Pre-scan 1-8GHz.set Sequence: Preliminary Scan Operator: Eugene Adams EUT Type: General Purpose Computer / Minnow EUT Condition: The EUT is constantly looping data back to itself. Comments: Spider HDMI Cable Temp: 72f Hum: 42% 120V 60Hz No emissions found above 6GHz



Title: CISPR 22 Class A 8/7/2015 4:26:42 PM File: Radiated Final 1-8GHz.set Sequence: Final Measurements Operator: Euigene Adams EUT Type: General Purpose Computer / Minnow EUT Condition: The EUT is constantly looping data back to itself. Comments: Spider HDMI Cable Temp: 72f Hum: 42% 120V 60Hz No emissions found above 6GHz

Freq(MHz)	(QP) Margin (dB)	(QP)EMI (dBµV/m)	(PEAK) EMI (dBµV/m)	Limit (dBµV/m)	Pol	Ttbl Agl (deg)	Twr Ht (cm)	Transduce r (dB)	Cable (dB)	Pream p (dB)
1039.00	-16.71	39.29	46.24	56.00	Н	45.75	99.88	26.43	4.32	38.63
1039.00	-18.39	37.61	45.71	56.00	V	154.25	111.11	26.43	4.32	38.63
1188.00	-29.59	26.41	40.09	56.00	Н	0.00	238.41	26.89	4.61	39.02
1188.00	-25.27	30.73	44.66	56.00	V	130.00	209.41	26.90	4.61	39.02
1337.00	-20.59	35.41	44.19	56.00	Н	117.75	99.82	27.30	4.92	38.97
1438.00	-28.47	27.53	42.78	56.00	Н	289.50	300.94	27.55	5.15	38.71
1931.00	-21.77	34.23	47.81	56.00	Н	161.50	122.58	31.12	6.09	40.35
2228.00	-22.85	33.15	45.81	56.00	Н	123.00	133.70	31.79	6.48	39.68

Title: CISPR 22 Class A 8/7/2015 1:48:36 PM File: Conducted Pre-Line.set Sequence: Preliminary Scan Operator: Eugene Adams EUT Type: General Purpose Computer / Minnow EUT Condition: The EUT is constantly looping data back to itself. Comments: Spider HDMI Cable Temp: 72f Hum: 42% 120V 60Hz



Title: CISPR 22 Class A 8/7/2015 1:53:57 PM File: Conducted Final-Line.set Sequence: Final Measurements Operator: Eugene Adams EUT Type: General Purpose Computer / Minnow EUT Condition: The EUT is constantly looping data back to itself. Comments: Spider HDMI Cable Temp: 72f Hum: 42% 120V 60Hz

Freq(MHz)	(AVG) Margin AVL (dB)	(QP) Margin QPL (dB)	(AVG) EMI (dBuV)	(QP) EMI (dBuV)	(PEAK) EMI (dBuV)	(AVG) Limit (dBuV)	(QP) Limit (dBuV)	Transduce r (dB)	Cable
0.15	-21.06	-18.58	44.94	60.42	66.81	66.00	79.00	0.62	0.09
0.17	-31.88	-23.10	34.12	55.90	61.33	66.00	79.00	0.57	0.07
0.19	-30.02	-30.67	35.98	48.33	59.06	66.00	79.00	0.52	0.04
0.20	-25.23	-24.80	40.77	54.20	57.47	66.00	79.00	0.49	0.03
0.60	-24.45	-31.28	35.55	41.72	45.90	60.00	73.00	0.24	0.37
3.33	-27.07	-33.49	32.93	39.51	44.85	60.00	73.00	0.23	0.18

Title: CISPR 22 Class A 8/7/2015 2:07:35 PM File: Conducted Pre-Neutral.set Sequence: Preliminary Scan Operator: Eugene Adams EUT Type: General Purpose Computer / Minnow EUT Condition: The EUT is constantly looping data back to itself. Comments: Spider HDMI Cable Temp: 72f Hum: 42% 120V 60Hz

Title: CISPR 22 Class A 8/7/2015 2:11:19 PM File: Conducted Final-Neutral.set Sequence: Final Measurements Operator: Eugene Adams EUT Type: General Purpose Computer / Minnow EUT Condition: The EUT is constantly looping data back to itself. Comments: Spider HDMI Cable Temp: 72f Hum: 42% 120V 60Hz

Freq(MHz)	(AVG) Margin AVL (dB)	(QP) Margin QPL (dB)	(AVG) EMI (dBuV)	(QP) EMI (dBuV)	(PEAK) EMI (dBuV)	(AVG) Limit (dBuV)	(QP) Limit (dBuV)	Transduce r (dB)	Cable
0.15	-24.38	-20.29	41.62	58.71	62.71	66.00	79.00	0.40	0.09
0.16	-33.50	-23.99	32.50	55.01	59.60	66.00	79.00	0.38	0.08
0.17	-32.38	-31.39	33.62	47.61	60.14	66.00	79.00	0.34	0.06
0.19	-33.60	-30.60	32.40	48.40	54.76	66.00	79.00	0.30	0.04
0.22	-32.32	-31.85	33.68	47.15	54.49	66.00	79.00	0.23	0.06
3.37	-25.73	-34.12	34.27	38.88	43.86	60.00	73.00	0.02	0.19