

Silicom ltd., 14 Atir Yeda St., Kefar Sava, ISRAEL
sales@silicom.co.il www.silicom-usa.com www.smartsilc.com
Intel is a registered trademark of Intel Corporation. All other trademarks, including but not limited to NGINX, SPDY and Spirent
are the property of their respective owners. Silicom reserves the right to make changes without further notice to any products
or data herein to improve reliability, function or design. Copyright© 2015 All Right Reserved

QuickAssist Technology Acceleration Quadruples

Squid Web Cache Server Performance

Apr. 2016

ABSTRACT

 Web cache proxy servers are quite unique software

creations. Developing, optimizing and even

operating and integrating web cache servers require

high level of expertise in two distinct fields, rarely

found in the same profile of developers and

integrators.

 Firstly, as a web proxy, cache server in general

features high degree of network engineering

hallmark. Form the implementation of lower layers

of networking and TCP connections handling, up to

layer 7 HTTP intricacies, moving up to different web

applications aspects that should be taken into

consideration, it is a high profile networking work for

quality web caching. One of the prominent aspects of

proxy cache configuration is the dynamic content

provisioning. While static content is provisioned

from cache, and dynamic content would be brought

from source servers, successful and optimal

combination of the two is a key factor for web cache

added value.

 Second, good caching is all about proper storage

handling. Starting from the choice of storage

structure and down to the proper selection and

configuration of the file system underneath, storage

plays yet another key factor when it comes to cache

service. Storage is required to serve as quickly as

possible, and as stable as possible, without losing

integrity. There are implementations (e.g., Varnish)

that have taken this requirement to the extreme, and

have focused mainly in storage optimization. Having

gone to a great length to that direction, those

implementation ended up without the capability to

scale into other direction, such as SSL connectivity,

which is the subject of this paper.

 So all in all, it is not all simple at all to implement a

good web cache proxy server. One have to be

specialized in many aspects of engineering

(networking, storage, etc.), and to strike the right

balance as it comes to deciding what really matters.

Actually, everything matters.

1. SQUID AND SSL

 Squid web cache proxy server [1] is a well

maintained open source project that has been out

there for quite a while, and has a well-established

install base. From software architecture point of

view, squid codebase sustains a subtle balance

between maintainable code on one hand, and well

performing code. This can be said on the storage

implementation in Squid and also on the networking

part of it. In this philosophy, the SSL part is

implemented as an elegant overlay on the

communications layer, using OpenSSL libraries and

API thereof [2]. This is the place to comment on the

Squid software design tactics, as it comes to the

communications layer, and say that architect took a

very smart choice in implementing this layer with

non-blocking I/O in mind. This design approach

enabled Silicom to successfully integrate the

hardware acceleration engine.

mailto:sales@silicom.co.il
http://www.silicom-usa.com/
http://www.smartsilc.com/
http://smartsilc.com/

2. ADD INTEL® QUICKASSIST

2.1 Why Offload Engine

 Intel® QuickAssist Technology (QAT) [3] is a

modern software suite, driving Intel® acceleration

chipset family [4], around which, Silicom has built a

wide range of PCIe adapters [5] in various form

factors, and compositions. From single chipset

adapter, to dual, and up to quad chipset adapter,

Silicom offer support for various PCIe bus profile (8

lanes, 16 lanes, PCIe v2 and PCI v3). Luckily, Intel®

has gone to a great length spreading the support for

QAT in a lot of popular open source projects [6], and

not only that, but they've also added QAT as a crypto

engine for the asynchronous version of OpenSSL, [7]

soon to be part of the official release.

 So, to cut a long story short, replacing Squid's native

OpenSSL version with QAT enabled asynchronous

OpenSSL required small and straight forward

modifications to <squid>/src/ssl_support.c

SSL overlay source module, and from this point

onward, all

crypto work

had moved

from software

to Silicom

adapter.

 There are

two fronts

where offload

engine for

SSL add

value. Firstly,

number of

SSL handshakes per second is greatly improved by

the offload engine, simply because the CPU is

relieved off the heavy lifting of complex asymmetric

encryption computations, and a purpose built

dedicated engine is used instead. Bulk crypto, which

is performed on the connection's payload is also

performed on the crypto engine, enhancing the

offload effect.

2.2 Tests

 The test scheme that was used was simple. Same

version of Squid was operated as software only, and

then with the assistance of Intel® based Silicom SSL

acceleration adapter, and the results were compared

to one another. Table 1 summarizes the test

environment.

Server Dell Inc. PowerEdge R420

CPU Intel(R) Xeon(R) CPU E5-2440

v2 @ 1.90GHz
NIC Silicom PE210G2SPi9 2 x 10Gb
SSL card Silicom PE3iSCO2
Squid v2.6.9

v3.5.13
OpenSSL 1.0.1m

Table 1 - Test Setup

 Apache benchmark [8] tool was used as a stress tool.

 2.3 Results

 At a glance, the addition of hardware SSL

acceleration vastly and improves total handshakes

per second.

Squid Accelerated Conns/Sec CPU%

v2.6.9 No 354 35%

v2.6.9 Yes 1,276 17%

v3.5.13 No 298 40%

v3.5.13 Yes 1,176 25%

Table 2 - Tests Results

 It is immediately visible that SSL offload both eased

up on CPU (leaving much more breath for business

logic processing) and more importantly, allowed for

four times as many connections to serve. The setup

remain quite a naïve setup throughout the tests,

meaning that the Squid process was running as single

process on single CPU core, without stretching to

parallel processing, that would have exhibited true

linear performance scalability with connections

handling.

SUMMARY

 We've seen how easy it is to empower Squid with

more muscles without compromising any other

aspects of its operation, and through a simple

addition of crypto engine and quietly replacing

OpenSSL version with another. Next, as mentioned

above, test would be performed to allow for parallel

processing and linear scalability.

REFERENCES

[1] See http://www.squid-cache.org/

[2] See https://www.openssl.org/

[3] See:

http://www.intel.com/content/www/us/en/embedded/techn

ology/quickassist/overview.html

[4] See:

http://ark.intel.com/products/codename/60172/Coleto-

Creek

[5] See: http://www.silicom-

usa.com/article.aspx?item=946&%3Bln=en

[6] See: https://01.org/packet-processing/intel%C2%AE-

quickassist-technology-drivers-and-patches

[7] See:

http://www.intel.com/content/dam/www/public/us/en/docu

ments/solution-briefs/accelerating-openssl-brief.pdf

[8] See:

https://httpd.apache.org/docs/2.4/programs/ab.html

Non-Blocking I/O *

THE MOST OPTIMAL WAY TO

BENEFIT FROM A HARDWARE

OFFLOAD ENGINE, SUCH AS

INTEL® QUICKASSIST

TECHNOLOGY ADAPTER,

WOULD BE BY DRIVING IT IN

NON-BLOCKING I/O MODE

(ASYNCHRONOUSLY).

http://smartsilc.com/
http://www.squid-cache.org/
https://www.openssl.org/
http://www.intel.com/content/www/us/en/embedded/technology/quickassist/overview.html
http://www.intel.com/content/www/us/en/embedded/technology/quickassist/overview.html
http://ark.intel.com/products/codename/60172/Coleto-Creek
http://ark.intel.com/products/codename/60172/Coleto-Creek
http://www.silicom-usa.com/article.aspx?item=946&%3Bln=en
http://www.silicom-usa.com/article.aspx?item=946&%3Bln=en
https://01.org/packet-processing/intel%C2%AE-quickassist-technology-drivers-and-patches
https://01.org/packet-processing/intel%C2%AE-quickassist-technology-drivers-and-patches
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-openssl-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-openssl-brief.pdf
https://httpd.apache.org/docs/2.4/programs/ab.html

