

Silicom ltd., 8 Hanagar St., Kefar Sava 4442537, ISRAEL
sales@silicom.co.il www.silicom-usa.com www.smartsilc.com
Intel is a registered trademark of Intel Corporation. All other trademarks, including but not limited to NGINX, SPDY and Spirent
are the property of their respective owners. Silicom reserves the right to make changes without further notice to any products
or data herein to improve reliability, function or design. Copyright© 2015 All Right Reserved

QuickAssist Technology to Accelerate

Feb. 2015

ABSTRACT

 NGINX (pronounced, "engine-x") is considered to be

the fastest growing web server worldwide [1]. It is an

open source project backed by commercial source

branch, with pretty good software design

(asynchronous single thread) and features (server,

reverse proxy, load balancer, etc.). NGINX is both

feature rich and powerful. It exhibits ease of use to the

administrator, along with a better than average

performance figures. In fact, there are many

"switches", "levers", "slides" and "button" one can

push and pull, to tune up and optimize server's

performance [2] to best fit a given platform. However,

tuning NGINX operation it only half of optimization

that can be implemented, for SSL crypto computation

will always wait patiently around the corner to come

and consume considerable CPU power; especially

when it comes to asymmetric encryption, crypto key

exchange or key signing. Looking further ahead, things

will only get more serious, when SPDY will evolve to

be the de-facto standard web protocol. Considerably

larger portion of data will traversed encrypted through

the net, and SSL handshakes and re-handshakes will be

more and more ubiquitous.

 Target audience of the test described herein are

engineering teams, dealing with SSL accelerations for

their implementation, or will soon get there. Lawful

interception, intrusion detection, application delivery

controllers, and most notably, Firewalls.

 The reason NGINX was the server software of choice

for the purpose of this test, is twofold. First, this is a

user space application, of which operation on one hand,

and constrains on the other, are relatively known and

easy to convey. Second, it is native asynchronous

design, with OpenSSL interface for HTTPS service.

Thus, a quick integration to hardware crypto engine

seems a very logical step to do. In short, we chose to

demonstrate a user space application – exhibiting close

to real life web traffic handling.

Keywords

NGINX; SSL Offload, Acceleration, SPDY, man-in-

the-middle

1. INTRODUCTION

 The primary goal of the benchmarks and tests

described herein is to exhibit and demonstrate how

NGINX HTTPS service is increased and optimized in

performance, through the use of Intel® Coleto Creek

8955 acceleration chip set. The specific areas where an

acceleration is expected are demonstrated. Finally, an

analysis is reached regarding the measured capacity

improvement, against the cost of acceleration and

offload.

 A "near real life" data of SSL acceleration options is

required more and more, mainly among application

vendors whose application is expected to massively

deal with encryption, facing upcoming HTTP/2.0.

Formerly considered an attack, "man-in-the-middle"

increasingly becomes the mode of operation for more

and more lawful interception operators.

2. TESTS CONSIDERATIONS

2.1 Apples and Oranges or Types of

Tests
 Most commonly, benchmark results of look-aside

offload acceleration engines, are showing impressive

results, under nominal and ideal tests scheme. For

instance, testing close looped RSA primitive

operations can give a clue of the nominal capability of

the offload engine, but does not address other major

concerns when opting for the use of encryption offload.

mailto:sales@silicom.co.il
http://www.silicom-usa.com/
http://www.smartsilc.com/
http://smartsilc.com/

 When choosing a car, it is not enough to ask what is

the engine's torque, but it is important to understand in

advance how many seats are in the car, what is the

expected MPG, etc. In other words, other important

concerns may be:

 Power consumptions and mechanical

envelope

 Host memory constraints and consumption

 Maximal number of SSL servers'

certificates that can be used

 Maximal number of SSL client instances

 Time and efforts for application integration

 User space / Kernel space

 How far is offload implementation from

software-only implementation

 Future scalability and virtualization support

 PCIe buss utilization

 What is the cost of offload

 How many RSA handshakes can be

achieved, for real. What bandwidth can be

achieved, for real.

 This information is valuable in preliminary stages of

system design, with offload integration in mind. In this

current work we are rackling the last three concerns, of

which the last item may be the key element for deciding

to opt for an offload engine.

 So, instead of running on tight loops as close as

possible to the acceleration engine, we've attempted to

install a full HTTPS service setup, on standard server.

The high level method of the tests described herein was

as follows:

1) Set up NGINX in an optimal setup

2) Benchmark software SSL performance, and

check CPU utilization

3) Benchmark hardware SSL performance, and

check CPU utilization

4) Compare results of software encryption and

hardware encryption

5) Compare results to "nominal" close tight

loop of hardware acceleration engine

performance

6) Re-optimize NGINX and/or operating

system setup

However synthetic and sterile they may be, the nominal

benchmark results are the first reference for assessment

of how far can we further go to optimize real life like

test setup. These nominal results for the current Intel®

Coleto Creek SKUs (the 8950 and 8955) are presented

in table 1.

 In near real life scenario, however, the figures

described in Table 1, translate to more abstract gauges.

The RSA operations rate translates to SSL handshakes

or connections per second, while the bulk crypto

figure translates to SSL or HTTPS bandwidth.

 Great many variables become part of the test in this

case, throughout the data path. Starting with the test

equipment that can be either a dedicated network stress

tool with SSL capabilities, a bunch of HTTPS clients'

scripts shooting from several nodes, or any other tool

that comes to mind. In this first test taken herein, a

dedicated stress tool is used. Further down the data

path, the ingress network interface is the next factor. A

10GbE interface may be good enough for SSL

handshakes per second benchmarking, but may not

serve as well, and even become bottleneck for SSL

bandwidth testing. The OS TCP/IP stack is the next

place to tune, where SSL connections per second

benchmark may require different buffer setup than SSL

bandwidth benchmark.

 When testing SSL connections per second rate or

SSL bandwidth tests, it is important not to accidentally

slip into other types of test, unintentionally.

Connections per second test could easily slip into a

connections concurrency test, without notice, and to hit

a glass ceiling, just because the process under test hits

the open file descriptors limit. Or, by not carefully

designing the clients operation, the test might include

too many HTTP transitions (HTTP GET, probably),

and before you know it, the results you get are, in fact,

transactions per second, rather than connections per

second.

 Back to the test setup, the software components

integration is quite straight forward, and was

implemented through the use of a will defined interface

of each component.

Table 1 – Intel® Coleto Creek Nominal Performance

Intel® Coleto Creek

SKU

RSA 1K ops/sec* RSA 2K ops/sec* AES128 Crypto**

1 8950 165K 35K 50Gpbs

2 8955 190K 40K 50Gbps
* Asymmetric cryptography

** Symmetric cryptography

http://smartsilc.com/

2.2 Asynchronous Operation
 On the NGINX server itself, among the many

"switches", "buttons", "levers", and "chokes" that can

be used to adjust its performance, probably the most

effective is the number of CPU cores to be occupied

by asynchronous threads. When serving connections

from multiple clients, that are established non-

synchronously, then there is no question that the server

side, the NGINX in this instance, should operate also

in an asynchronous fashion. Intel® QuickAssist

software suite, as the longer arm for this asynchronous

mode of operation, is built just for that. Accessing the

hardware offload engine is done through and API that

can act either:

 Synchronously – every primitive access to

the offload engine would not return, until

completed;

 Asynchronously – every primitive access to

the offload engine would immediately

return. Completion would be signaled

through a callback function.

 Out of the two, the asynchronous mode was used in

this test, to best suit NGINX mode of operation as a

whole. OpenSSL package serves as the SSL engine for

the NGINX on both software and hardware tests. On

the hardware test, however, the cryptography tasks

were forwarded to the Intel® Coleto Creek adapter,

rather than being implemented on CPU. As a result, the

asynchronous operation of the NGINX as a whole was

slightly different:

 In the software-only tests – The NGINX

thread operated asynchronously towards the

HTTPS client;

 In the hardware assisted tests – Same as

above the NGINX thread operated

asynchronously towards client, and

OpenSSL operated asynchronously towards

NGINX thread.

 However an insignificant observation it may look,

orchestrating these two asynchronous operations

together is a key element to squeeze best performance

out of offload engine, under near real life conditions.

2.3 Get It or Not
 A web HTTPS session consists of a TCP connection

establishment, transporting SSL handshake, followed

by clients' requests (HTTP method) and servers'

responses. Depending on the specific HTTP and

SSL/TLS versions, a re-handshake may be requested

by either party, client or server. These session building

blocks impose different burden on processing units, as

it comes to cryptography. Most notably, RSA

asymmetric cryptography often considered the center

of gravity.

 Therefore, in order to properly benchmark RSA

operations capability, or more accurately, SSL/TLS

handshakes per second, the part of the HTTP method

should be a negligible as can be, and for the best, it

should not be used at all.

 In the test presented herein, a "GET… HTTP…"

request was used, and a "200 Ok" response was

expected. That was the behavior of the test equipment,

and even if there was an attempt to minimize its effect

by HTTP requesting a one byte size resource, still,

network bandwidth was used, and bulk encryption

power was invested (even for the shortest buffer), in

excess.

 Further test that are planned and would follow, would

not send HTTP request at all. Once a session is

established, it would immediately be terminated.

2.4 Cost of Offload
 Operating an offload engine require transferring data

to and from the accelerator. Indeed, DMA operation

over PCIe bus, where the accelerator card is the DMA

master, relive large part of buffer management off the

host CPU; but still, CPU cycles needs to be vested to

manage this path.

 Offloading a task off CPU to a sub engine, therefore,

is beneficial if such use lowers significantly the CPU

cycles that are spent for the cryptography task;

relieving valuable CPU cycles for business logic

processing. A manual note to the GNU/Linux 'top'

utility was used in this test to determine CPU usage

during loads, with software or with hardware offload

engine.

Figure 1 - Software Components Integration

http://smartsilc.com/

 Once series of test is completed and both SSL

handshake and bulk crypto is benchmarked, it would

be interesting to see if both type of offload exhibit same

gain in terms of gain and benefit.

3. TESTS

3.1 Outline

 The following setup was used for the tests.

Server Supermicro X9DRD-7LN4F,

CPU 2xE5-2670 v2, 128Gb

RAM

OS Fedora16 x86_64 kernel 3.0.1

QuickAssist QAT1.6.L.1.0.9-22

OpenSSL 1.0.1h

NGINX 1.4.2, patch nginx-1.4.2-005

Adapter Silicom PE3iSCO3

 Stress traffic was generated with a Spirent layer 7

packet generator.

3.2 Results – SSL/TLS Handshakes
 Let's start with the bottom line. Intel® 8955 Coleto

Creek chip set brings considerable added value under

real life scenario. This fact, however has to be further

detailed. The method of the test that was carried out

herein, was to test a software only implementation,

against an implementation that incorporates the Intel®

8955 Coleto Creek chip set. However, while NGINX

as a software only implementation exhibited fair load

balance and distribution across all incorporated CPU

cores (maximum of 8 cores), same NGINX setup, but

with Intel® 8955 Coleto Creek chip set as an offload

crypto engine did not exhibit same fair load balance

and distribution. Nevertheless, the Coleto Creek

operation has brought:

a. Significant performance improvements

b. Significant CPU relief

The test still has a length to cover, but even under far

from ideal conditions, the power of the Intel® 8955

could be demonstrated.

Table 2 - Interim Results for SSL/TLS Handshakes Benchmarks

1 x GET

https://193.0.0.1/1.html

RSA 2K key RSA 4K key

AES128-SHA

QuickAssist with Intel® 8955

21,376 4,130
CPU usage:

CPU 0-7: 80%; CPU 8-19: 0%

Software only

4,866 2,072
CPU usage:

CPU 0-19: 100%

Figure 2 - SIlicom PE3iSC02 with Intel® ColetoCreek 8950 Chip Set

http://smartsilc.com/

 We need to further check core affinity, QPI buss

avoidance, no question. But even with such non

optimal setup, Intel® 8955 Coleto Creek chip set has

great value:

1) It literally doubles SSL/TLS handshake rate

with 2k and 4k keys;

2) It relieves considerable amount of CPU

cycles.

And when considering that the relieved CPU cycles are

of an Ivy bridge Intel® microarchitecture running at

2.5 GHz, the added value of the accelerator

immediately appear.

3.3 Results – Bandwidth
 Yet to be completed next. More optimal setup would

be configured for meaningful tests results.

4. Where to go from here
 The target is to get close to the nominal capability

of the acceleration engine as brought herein in Table 1.

There is a lot to cover down the road. Tests will be

continued with more efficient NGINX setup, to show

that even with tuned software implementation, and

offload engine for encryption still brings considerable

value, especially for the heavy lifting tasks, of the

asymmetric cryptography.

 A fair estimate, based on several other tests, points at

10,000 RSA 2K SSL/TLS handshakes per second as a

cap number for typical user space software

implementation on a server similar to the one that was

tested in this test; with all core screaming 100%

utilization.

 Therefore, based on the results brought herein, in

Table 2, specifically from the CPU relief that was

enabled by the offload engine, it is fair to estimate that

in more optimal application set up, the above number

of 10K handshakes, could be doubled, and perhaps

even more.

 To gain better results out of the setup, the following

areas are to be more thoroughly observed:

1) Incoming traffic load balancing across

CPU cores and core affinity scheme should

be tightened;

2) Not using HTTP request methods at all, for

instance, not sending GET request at all.

Later on a 1 byte resource request would be

added in controlled manner.

3) Two threads per core with and without CPU

hyper threading enablement would be

tested.

4) TCP tuning would be revisited.

 In a more optimized setup, a bandwidth tests would

be carried out as well.

 Further down the road, same tests would be expanded

to ECC cryptography. Moreover, dual chip adapters, as

well as quad chip PCIe adapters, that are already

available by Silicom, would be tested, to demonstrate

linear scalability.

REFERENCES

[1] NGINX Now Powers 146 Million Websites, Launches Version 1.6 and 1.7 Of Its Web Server (Apr, 24th, 2014)
http://techcrunch.com/2014/04/24/nginx-now-powers-146-million-websites-

launches-versions-1-6-and-1-7-of-its-web-server/

[2] Tuning NGINX for Performance (Oct. 10th, 2014)
http://nginx.com/blog/tuning-nginx/

[3] NGINX SSL Performance (July, 2014)
http://nginx.com/wp-content/uploads/2014/07/NGINX-SSL-Performance.pdf

http://smartsilc.com/
http://techcrunch.com/2014/04/24/nginx-now-powers-146-million-websites-launches-versions-1-6-and-1-7-of-its-web-server/
http://techcrunch.com/2014/04/24/nginx-now-powers-146-million-websites-launches-versions-1-6-and-1-7-of-its-web-server/
http://nginx.com/blog/tuning-nginx/
http://nginx.com/wp-content/uploads/2014/07/NGINX-SSL-Performance.pdf

