Description

Silicom’s 100 Gigabit Ethernet PCI Express content aware director server adapters are designed for servers and high-end appliances. The Silicom content aware director server adapter is designed with an on board smart routing architecture that enables packets to be redirected or dropped based on defined rules.

The Silicom’s 100 Gigabit Ethernet content aware packet director reduces host system process since only packets that are defined to be targeted to the host systems are routed to the host; other packets can be routed to the other port or can be dropped by the content aware hardware routing architecture.

The Silicom’s 100 Gigabit Ethernet content aware packet director is targeted to network applications that needs to process, monitor or bypass packets based on defined rules. The adapter supports three main modes of operation: Content Aware Bypass, Content Aware TAP and content Aware filtering NIC.

Content Aware Bypass
Silicom’s 10 Gigabit Ethernet content aware director provides intelligent packet redirection capability where rules specify which packets are directed to the host system and which packets are directed to the other port (Bypass).

Content Aware TAP
Silicom’s 100 Gigabit Ethernet content aware director provides intelligent packet redirection capability where all packets are directed to the other port (Bypassed) and rules specify which packets are copied to the host system (TAP).

Content Aware Filtering NIC
Silicom's 100 Gigabit Ethernet content aware provides intelligent packet redirection capability where rules specify which packets are directed to the host.

The Silicom 100 Gigabit Ethernet PCI Express content director server adapter is based on Intel FM10420 Ethernet controller and a L3 switch router. The Silicom’s 100 Gigabit Ethernet PCI Express adapter is based on standard L2 driver and with the content director engine reduces CPU host system processing.

The Silicom 100 Gigabit Ethernet PCI Express content aware server adapter offers simple integration into any PCI Express X16 to 100Gigabit Network.

Key Features

Content Aware Director:
- Provides intelligent packet redirection capability where rules specify which packets are directed to the host system and which packets are directed to the other port (Bypass)
- Provides intelligent packet redirection capability where all packets are directed to the other port (Bypassed) and rules that specify which packets are copied to the host system (TAP)
- Provides intelligent packet filtering / drop capability where rules specify which packets are directed to the host or dropped
- Provides redirection rules that can be defined using source IP/ destination IP / Source Port / Destination Port / VLAN tuples
- Redirection and packet filtering / drop are performed by the hardware itself in **wire speed** and do not require any software and CPU host system power processing
• Intelligent redirect mechanism is controllable via software
• Intelligent routing mechanism is controllable via software
• Support 2x100G / QSFP28 ports
• 100G QSFP28 Ports support 100GBase-SR4 and 100GBase-LR4

-**CS4: Fiber 100GBASE-SR4:**
 • 100 Gigabit Fiber Ethernet port supports 100GBASE-SR4 (850nM LAN PHY)
 • 100Gigabit 850nM QSFP28

-**CL4: Fiber 100GBASE-LR4**
 • 100 Gigabit Fiber Ethernet port supports 100GBASE-LR4 (1310nM LAN PHY)
 • 100Gigabit 1310nM QSFP28

Common Key features:
Host Interface:
• PCI Express X16 lane
• Support PCI Express Base Specification Revision 3.0, 8GT/s, 5GT/s or 2.5GT/s

Intel FM10420 Features:
• Single-element 4MB shared memory
• Single-element 4MB shared memory
• L2/L3/L4/OpenFlow forwarding & ACLs
• Stateless load balancing to CPUs
• Datacenter Bridging (lossless Ethernet)
• 32K 40-bit TCAM entries
• 16K MAC & NextHop tables
• Up to 300Gbps High-bandwidth CPU interface
• 2x 50Gbps 8-lane PCIe interfaces
• 4x 25Gbps 4-lane PCIe interfaces
• Up to 8 25G/10G/2.5G/1G ports
• Up to 2 40G (4 x 10G)
• Up to 2 100G (4 x 25G)
• 300ns network latency (100GbE)
• 1000nS host-network latency

LAN Features:
256 queues per PCIe x8 interface
SR-IOV (64 VFs per PCIe x8 interface)
IP/TCP/UDP checksum
Receive side scaling (RSS)
TCP segmentation offload (TSO/LSO)
LEDs indicator for link/Activity

Technical Specifications

| Fiber 100 Gigabit Ethernet Technical Specifications (100GBASE-SR4) Adapters: |
|---------------------------------|----------------------------------|
| IEEE Standard / Network topology: | Fiber Gigabit Ethernet, 100GBase-SR4 (850nM) |
| Data Transfer Rate: | 103.125GBd |
Cables and Operating distance:
Up to:
Multimode fiber: 62.5um, (OM4) 100m

Optical Output Power:
Typical: TBD dBm
Minimum: TBD dB
* being defined by IEEE 802.3bm

Optical Receive Sensitivity:
Typical: TBD dBm
Maximum: TBD dBm
* being defined by IEEE 802.3bm

Fiber 100 Gigabit Ethernet Technical Specifications (100GBASE-LR4) Adapters:

IEEE Standard / Network topology:
Fiber 100Gigabit Ethernet, 100GBASE-LR4 (1310nM)

Data Transfer Rate:
103.1GBd

Cables and Operating distance:
Up to:
Single-Mode: 10km

Optical Output Power:
Typical: TBD dBm
Minimum: -4.3 dBm

Optical Receive Sensitivity:
Typical: TBD dBm
Maximum: -10.6 dBm

Operating Systems Support

Operating system support: Linux

General Technical Specifications

Interface Standard:
PCI-Express Base Specification Revision 3.0(8 GTs)

Board Size:
Standard height long add-in card 203.2mm X 111.15mm (8”X 4.376”)

PCI Express Card Type:
X16 Lane

PCI Express Voltage:
+12V ± 8%

External Voltage from external PW jack:
+12V ± 8%

PCI Connector:
Gold Finger: X16 Lane

Controller:
Intel FM10420

Holder:
Metal Bracket

Operating Humidity:
0%–90%, non-condensing

Operating Temperature:
0°C – 40°C (32°F - 104°F), Air flow requirement 200LFM

Storage:
-40°C–65°C (-4°F–149°F)

EMC Certifications:
FCC 47CFR Part 15:2013, Subpart B Class B
Conducted emissions
Radiated emissions
EN 55022: 2010, Class B
Conducted disturbance at mains terminals
Conducted disturbance at telecommunication port
Radiated disturbance
EN 61000-3-2: 2006+A1(09)+A2(09)
Harmonic current emissions
EN 61000-3-3: 2008
Voltage fluctuations and flicker
EN 55024: 2010
Immunity to electrostatic discharge (ESD)
Radiated immunity to radio frequency electromagnetic field
Conducted immunity to electrical fast transients / bursts (EFT/B)
Conducted immunity to voltage surges
Conducted immunity to disturbances induced by radio frequency field
Conducted immunity to voltage dips and short interruptions

MTBF*: The prediction was performed for 40°C Ambient temperature, GB Environmental condition.
The reliability prediction was performed in accordance with Telcordia SR-332

LEDs

LEDs: Four LEDs per port
(1) Link/Act 100/25/10Gbps LED:
- Turns on - link, Blink – ACT
- 100Gbps(Yellow)
- 25Gbps(Orange)
- 10Gbps(Blue)
(1) Link/Act 40/25/10Gbps LED:
- Turns on - link, Blink – ACT
- 40Gbps(Yellow)
- 25Gbps(Orange)
- 10Gbps(Blue)
(2) Link/Act 25/10Gbps LEDs:
- Turns on - link, Blink – ACT
- 25Gbps(Orange)
- 10Gbps(Blue)

LEDs location: LEDs are located on the PCB, visible by light quide in the metal bracket

Connectors: (2) MPO

Functional Description

Silicom’s 10 Gigabit Ethernet content aware director Provides intelligent packet redirection capability where rules specify which packets are directed to the host system and which packets are directed to the other port (Bypass)

Figure 1: Content Aware Bypass Functional Block Diagram

Figure 1 illustrates functional block diagram of content aware Bypass:
Packets received in port A and meet rule are directed to port B, other packets are directed to port C (Bypass).

Packets received in port C and meet rule are directed to port D, other packets are directed to port A (Bypass).

Director - Content Aware TAP

Silicom's 10 Gigabit Ethernet content aware director provides intelligent packet redirection capability where all packets are directed to the other port (Bypassed) and rules specify which packets are copied to the host system (TAP).

![Content Aware TAP Functional Block Diagram](image)

Figure 2: Content Aware TAP Functional Block Diagram

Figure 2 illustrates functional block diagram of content aware TAP:
- Packets received in port A and meet rule are directed to ports B and C (TAP), other packets are directed to port C (Bypass).
- Packets received in port C and meet rule are directed to ports D and A (TAP), other packets are directed to port A (Bypass).

Director - Content Filtering NIC

Silicom's 10 Gigabit Ethernet content aware provides intelligent packet redirection capability where rules specify which packets are directed to the host or dropped.

![Content Aware Filtering NIC Functional Block Diagram](image)

Figure 3: Content Aware Filtering NIC Functional Block Diagram

Figure 3 illustrates functional block diagram of content aware TAP:
- Packets received in port A and meet rule, direct to port B. Packets received in port A and do not meet rule are dropped.
- Packets received in port C and meet rule, direct to port D. Packets received in port C and do not meet rule are dropped.
Load Balancing

Silicom’s 10 Gigabit Ethernet content aware director provides a load balancing of the traffic coming from the 4 x 10G external ports (0, 2, 4 and 6). The traffic is balanced, based on a defined hash configuration (5 tuple or other), to the 4x 10G internal interfaces (1, 3, 5 and 7) that are going to the host.

![Functional Block Diagram of Load Balancing](image)

Figure 4: Load Balancing Functional Block Diagram

Figure 4 illustrates functional block diagram of Load Balancing:

Packets received in the 4 x 10G external ports (0, 2, 4 and 6) to be balanced based on a defined hash configuration (5 tuple or other), to the 4x 10G internal interfaces (1, 3, 5 and 7) that are going to the host. If there is an external port that is heavily loaded, the traffic will go into the 4 internal interfaces with balanced load. An ISL tag is added to all incoming packets, it enables the host to know the source port and the ISL tag is removed from packets that are sent back from the host.

Tagged In-Line rule aware mode

Silicom’s 10 Gigabit Ethernet content aware director provides intelligent packet redirection capability where rules specify which packets are directed to the host system and which packets are directed to the other ports (Bypass) but at the same time it will get these bypassed traffic into the host with an ISL tag marking that these packets are bypassed, per the rules that the host will issue to the Silicom’s 10 Gigabit Ethernet content aware director.
Figure 5: Tagged In-Line rule aware mode Block Diagram

Figure 5 illustrates functional block diagram of Tagged In-Line rule aware mode:
Port Group (0, 1), (2, 3), (4, 5), (6, 7) configured as VLAN groups. Packets received in the 4 x 10G external ports (0,2,4 and 6) and meet and are directed to the other ports of the Vlan group with ISL tag that notify that match found. The original packet is sent to the "Output Port of Switch" in the rule matched policy. Packets received in the 4 x 10G external ports (0,2,4 and 6) and do not meet the rule are directed to the other ports of the Vlan group taged with ISL tag that notify that no-match found.

Director: Rules Classification and capabilities

Director Capabilities

The Redirector supports the following capabilities:
• Maximum total number of rules is 16K
• Each of the 16K rules can be defined to any port the on board multi-layer switch
• Each rule refers to incoming packet
• Rules are executed per order. First rule that matches will be executed
• Rules can be added and removed on the fly
• Each rule can include one or more classification fields. A rule match will be when all fields defined are match
• Each field can have a bit masking to check part of the classification field
• Per port statistics can be read, like packets count, errors, VLAN, and more
• Rules and action are done in wire speed at any packet size

Rules classification fields

Rules classification is done based on the first 128 bytes of the packets. The following list provides rules classification fields:
• MAC address, source & destination
• IPv4 – source & destination IP
• IPv6 – source & destination IP
• L4 Port – source & destination port
• Ethernet Protocol – ethertype
• IP Protocol num
• VLAN ID tagging
• User defined fields
• DSCP – match the different services code point – the six most significant bits of the Type of Service octet (IPv4) or Traffic Class octet (IPv6).*
• IPv6 Flow Label*
• IP length*
• ISL Frame Type*
• ISL USER*
• Source & destination port range*
• VLAN priority*
• VLAN tag type*
• TCP flags*
• TOS – match Type of Service octet (IPv4) or Traffic Class octet (IPv6)*
• TTL field in a IPv4 header or Hop Limit in a IPv6 header*
• *Future SW supports
Execution per rule

The following Executions per rule are supported:

- Drop – when a rule matches the packet will be dropped
- Redirect – when a rule matches redirect the packet to the defined destination port
- Mirror – when a rule matches copy packet also to a defined destination port

Director Advanced Features:

- Port trunking between the different Intel 10G ports to the Fulcrum 10G ports connected to it for load balancing between the different Intel ports
- Port trunking between the different External Fulcrum port to the external switch connected to it for load balancing between the different external ports
- Session balancing with L3/L4 hashing or other mechanism
- ISL (Inter Switch Link) Tagging per port can be added to the packets per configuration
- ISL Tagging can be removed and can be forward to specific port per the ISL index
- Quality of Service support with the following features:
 - Priority levels: 16 internal "switch" priorities, 8 or 16 VLAN priorities (optional use of CFI bit as an extra VLAN priority bit)
 - Arbitrary mapping of ingress VLAN priority to an internal VLAN priority
 - Arbitrary mapping of an internal VLAN priority to egress VLAN priority
 - Arbitrary mapping of internal VLAN priority to switch priority
 - Arbitrary mapping of DSCP to switch priority, configurable priority source selection
- Scheduler: 8 traffic classes, arbitrary mapping of switch priorities to traffic class, deficit weighted round-robin or strict priority
- Notification: Two congestion notifications can be supported
 - Virtual output queue congestion notification (VCN) and Intel proprietary backward congestion notification (FCN)
- Open Flow support (consistent with OpenFlow protocol standard)
- User defined Packet transmission with two optional modes: 1. Simple mode - transmit on specific port. 2. Switched mode - where switch determines destination port/ports, or with specific information such as whether or not egress processing rules should be applied
- Storm Control Management - Switch can support a variety storm controller. Each storm controller can be programmable to define rate, condition (like unicast ICMP frames whose TTL is at most 1), frame type (can be OR'ed), ingress & egress port ports. Actions: do nothing, drops frames to port (according to filter)

*Future SW supports

Order Information

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE3100G2DQIR-QS4</td>
<td>Dual port Fiber (SR4) 100 Gigabit Ethernet PCI Express Content Director Server Adapter</td>
<td>RoHS Compliant, X16 Gen 3, based on Intel FM10420</td>
</tr>
<tr>
<td>PE3100G2DQIR-QL4</td>
<td>Dual port Fiber (LR4) 100 Gigabit Ethernet PCI Express Content Director Server Adapter</td>
<td>RoHS Compliant, X16 Gen 3, based on Intel FM10420</td>
</tr>
</tbody>
</table>